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The stability of plane channel flow between compliant walls is investigated for dis-
turbances which have the same symmetry, with respect to the channel centreline,
as the Tollmien–Schlichting mode of instability. The interconnected behaviour of
flow-induced surface waves and Tollmien–Schlichting waves is examined both by
direct numerical solution of the Orr–Sommerfeld equation and by means of an
analytic shear layer theory. We show that when the compliant wall properties are
selected so as to give a significant stability effect on Tollmien–Schlichting waves,
the onset of divergence instability can be severely disrupted. In addition, travel-
ling wave flutter can interact with the Tollmien–Schlichting mode to generate a
powerful instability which replaces the flutter instability identified in studies based
on a potential mean-flow model. The behaviour found when the mean-flow shear
layer is fully accounted for may be traced to singularities in the wave dispersion
relation. These singularities can be attributed to solutions which represent Tollmien–
Schlichting waves in rigid-walled channels. Such singularities will also be found in
the dispersion relation for the case of Blasius flow. Thus, similar behaviour can be
anticipated for Blasius flow, including the disruption of the onset of divergence in-
stability. As a consequence, it seems likely that previous investigations for Blasius
flow will have yielded very conservative estimates for the optimal stabilization that
can be achieved for Tollmien–Schlichting waves for the purposes of laminar-flow
control.

1. Introduction
The eigenmode spectrum of the coupled Orr–Sommerfeld/compliant-wall problem

can be extraordinarily complex. The degree of complexity depends on the type of com-
pliant wall and the precise values of the wall parameters. But, certainly, for compliant
walls having a marked effect on laminar–turbulent transition, there is a proliferation
of eigenmodes which correspond to genuine physical phenomena. This rich variety
of eigenmodes was fully appreciated by Benjamin (1960) in his seminal paper which
inaugurated the theoretical study of the effects of wall compliance on hydrodynamic
stability. The various associated instabilities have been well documented elsewhere,
e.g. see Landahl (1962), Benjamin (1963), Carpenter & Garrad (1985, 1986), Riley,
Gad-el-Hak & Metcalfe (1988) and Carpenter (1990). What is, perhaps, still lacking
is a clear picture of the interconnections among the various modes. It is the main aim
of the present paper to elucidate these interconnections.
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It seems to us that two main issues remain obscure. First, there is the question of
the connection between the divergence instability and the other instabilities, such as
the Tollmien–Schlichting waves and travelling wave flutter. Secondly, it is known that
these last two instabilities interact and, under certain circumstances, coalesce to form
a powerful instability. Potential-flow theory suggests that divergence and travelling
wave flutter can also interact and coalesce to form a powerful flutter-type instability.
Most aspects of both these processes remain obscure, however.

Divergence is well known in hydro- and aero-elasticity. Physically it is takes the form
of a growing surface wave which is either stationary or travels slowly downstream.
It is destabilized when the hydrodynamic pressure forces generated by a surface
disturbance exceed the restorative structural forces. A simple potential-flow model
was used by Landahl (1962) when he originally identified divergence as an instability
of compliant walls. Much work has been done since using similar approaches. Very
much less is known about the corresponding eigenmode of the combined Orr–
Sommerfeld/compliant-wall system. Carpenter & Morris (1990) located a possible
candidate eigenmode which was stable, but no unstable eigenmode was found. There
can be no doubt of the physical existence of divergence; it has been observed in
experiments, e.g. see Gad-el-Hak, Blackwelder & Riley (1984), and also in numerical
simulations, see Lucey, Cafolla & Carpenter (1996). The very recent numerical study
of Yeo, Khoo & Zhao (1996) has shed considerable light on this matter in the special
case of compliant walls comprising a single viscoelastic layer. They show conclusively
that divergence is an absolute instability and, inter alia , describe how it is affected
by wall damping and variations in Reynolds number. The single viscoelastic layer is
rather a special case; for other types of compliant wall outstanding questions still
remain concerning the effects of wall damping on divergence and the reliability of
estimates of the onset speed based on the potential-flow model.

Modal coalescence between travelling wave flutter and Tollmien–Schlichting insta-
bility was first identified by Carpenter, Gaster & Willis (1983). It was also noted in
Carpenter & Garrad (1985, 1986). A more extensive study was carried out by Willis
(1986). He showed that under certain circumstances the two modes coalesced to form
a much more powerful instability. He also established that the group velocity is zero
at the point of coalescence which is a necessary but not sufficient condition for the
onset of absolute instability. A brief account of Willis’ work is given by Carpenter
(1990). The transitional mode revealed by the study of Sen & Arora (1988) is probably
another manifestation of the same phenomenon. Much about this modal coalescence
remains obscure. In particular, its connection or relationship with divergence and the
role of damping and other wall parameters need to be explained. Does it replace the
interaction and coalescence of travelling wave flutter and divergence found with the
potential-flow models? Or, is it a separate and distinct phenomenon?

We have chosen to base the present study on the stability of plane channel flow
rather than the Blasius boundary layer. This is because the simple parabolic form of
the velocity profile makes it possible to develop a more complete analytical treatment.
It is also an advantage that this is a truly parallel flow, thereby removing any possible
objection to the validity of the Orr–Sommerfeld equation for linear stability analysis.
Our main interest is in the use of wall compliance for laminar-flow control. Channel
flows are not of direct interest for this application. Nevertheless, the instabilities of
channel flows with compliant boundaries are not without interest in their own right.
Apart from possible applications in the process industries, there are many applications
in biomechanics. A particular example is to be found in modelling the phenomenon
of wheezing exhibited by people suffering from lung or bronchial disorders. In this
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connection Grotberg & Davies (1980). Grotberg & Reiss (1984) and Grotberg &
Shee (1985) have investigated the stability of uniform flow in a channel with flexible
boundaries. A more general review on lung and cardiovascular flows is given by
Grotberg (1994). Plane channel flows with compliant boundaries are also used to
model the collapse of tubes in other biomechanical applications – see, for example,
Luo & Pedley (1996) and the brief review by Kamm & Pedley (1989).

The remainder of the paper is set out in the following way. The previous lit-
erature on the effects of wall compliance on channel-flow stability is reviewed
in §2. The formulation of and the numerical methods for solving the coupled Orr–
Sommerfeld/compliant-wall eigenproblem are presented in §3. Results for the pure
Tollmien–Schlichting mode are also given here. The central part of the paper is §4
which is devoted to the flow-induced surface instabilities. The inviscid shear-layer
theory is set out in §4.1. Its application in a study of travelling wave flutter is pre-
sented in §4.2. Corrections to the inviscid theory to allow for the effects of a viscous
wall layer are discussed in §4.3 and full numerical solutions of the Orr–Sommerfeld
equation are presented in §4.4. Perhaps the most significant results are to be found in
§4.5 where modal coalescence and the onset of divergence instability are examined in
some detail. Finally conclusions are given in §5.

2. Earlier work
The first study of the effects of wall compliance on the stability of plane channel

flow was undertaken by Hains & Price (1962). They numerically integrated the
Orr–Sommerfeld equation in order to substantiate, albeit for a simpler flow, the
predictions made earlier by Benjamin (1960) for Tollmien–Schlichting waves in a
Blasius boundary layer over a compliant surface. Korotkin (1965) later developed
the analytic theory for the compliant channel problem, but formulated the boundary
conditions incorrectly.† Green & Ellen (1972) presented numerical results showing
that, for sufficiently compliant walls, the neutral stability curve for the Tollmien–
Schlichting mode could become deformed so as to include an additional region
of instability at higher wavenumbers. Because they failed to identify the mode of
instability that is now known as travelling wave flutter, Green & Ellen were unable
to give a full account of their numerical results.

Tsvelodub (1977) investigated the stability of plane channel flow between compliant
walls modelled as unsupported elastic plates. Ganiev, Ukrainskii & Ustenko (1988)
then studied a three-dimensional generalization of the same compliant-wall model.
Their numerical results suggest that, when variations in the Reynolds number are
attributed to alterations in the fluid viscosity, the onset of Tollmien–Schlichting
instability may be determined by three-dimensional disturbances. However, in order
to interpret their results, Ganiev et al. made use of a Squire transformation (Drazin
& Reid 1981), which included a scaling of the non-dimensional wall properties. If
the Reynolds number is varied by changing the centreline velocity of the mean flow,
then the scaling of the non-dimensional wall properties noted by Ganiev et al. is
precisely what is needed to ensure that the dimensional wall properties are kept
constant. From this it follows that a generalization of Squire’s theorem, i.e. that two-
dimensional disturbances determine the critical Reynolds number in wall-bounded

† No account was taken of the fact that at the perturbed location of the walls, the mean flow is
non-zero. Other studies have shown that the neglect of the associated term in the no-slip condition
makes a significant difference to the results obtained: the stabilizing effect of wall compliance on
Tollmien–Schlichting waves may even be replaced by destabilization (Tsvelodub 1977).
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shear flows, can be made for compliant channels. The validity of Squire’s theorem
has since been demonstrated by Rotenberry & Saffmann (1990) for channels with
compliant walls modelled as spring-backed plates.

A number of investigations have been made of the idealized case of plug flow,
i.e. constant-velocity flow, between flexible channel walls (Weaver & Paidoussis 1977;
Grotberg & Reiss 1984; Grotberg & Shee 1985). These studies aimed to model
physical behaviour, such as that displayed by flows in human lung airways, occurring
in circumstances somewhat different from those of present interest. Both linear and
nonlinear stability investigations were undertaken, with some emphasis on the latter.
Such work has been reviewed by Grotberg (1994). However, it should be mentioned
that for all of the studies referred to by Grotberg, the absence of shear in the mean
flow precludes the Tollmien–Schlichting instability. In the present investigation we are
interested in plane channel flow because it provides a model problem which is simpler
than the Blasius boundary layer, but still involves a wall-bounded shear flow in
which Tollmien–Schlichting waves can grow, ultimately leading to laminar–turbulent
transition. Consistent with this outlook, we will not attempt to give any direct account
of applications in fields of interest other than drag reduction and transition delay.

Some recent studies of the stability of plane channel flow between flexible walls have
been concerned with nonlinear aspects of the problem. Rotenbery & Saffman (1990)
derived a Ginzburg–Landau equation for finite-amplitude disturbances, which they
used to show that, in principle, the subcritical bifurcation of the Tollmien–Schlichting
instability found in rigid-walled channels could be replaced by a supercritical bi-
furcation for sufficiently compliant walls. Subsequent study by Rotenberry (1992)
suggested that the extent of this effect was so limited that it would not be ex-
pected to give rise to any significant qualitative difference between the process of
transition in compliant-walled channels and what is found in a rigid-walled channel.
Rossi (1991) also derived a Ginzburg–Landau equation for the nonlinear evolution
of disturbances in a channel, but for a case with broken symmetry; only one of the
channel walls was taken to be compliant, the other being kept rigid. The same config-
uration was then studied by Ehrenstein & Rossi (1993), adopting a more numerical
approach.

In the work of Pierce (1992), plane channel flow between flexible walls provides
a model problem to illustrate a general method for deriving the Ginzburg–Landau
equation in situations involving interfacial instability. For the particular wall param-
eters that were selected, the critical Reynolds number was found to be below the
rigid-wall value and the nature of the instability remained subcritical.

Rotenberry (1992) and Ehrenstein & Rossi (1993) make use of an exceedingly
simple model of the compliant wall, whereby only a spring-like element is retained
giving, in effect, a Hooke’s Law type of response. The value of such a study as a
general guide to the effects of wall compliance on the stability of plane channel
flow has been called into question by the recent work of Gajjar & Sibanda (1996).
They show that misleading results are obtained when the compliant-wall dynamics
are over-simplified. Gajjar & Sibanda base their study on a multideck asymptotic
analysis and consider both linear and nonlinear instability. A comprehensive set of
results is presented to show the effects on flow stability of varying the various wall
parameters. Like Ehrenstein & Rossi they consider the case where only one wall is
compliant.

The mechanism for the travelling wave flutter instability in compliant channel
flows has been investigated recently by Huang (1996) for varicose modes. Gajjar
& Sibanda are also well aware of the existence of other instabilities in addition
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to Tollmien–Schlichting waves. But the asymptotic structure on which they base
their analysis is appropriate for Tollmien–Schlichting waves rather than flow-induced
surface instabilities. Nevertheless, they discuss the other eigenmodes in the light
of their results which suggest the existence of a fast, short-wavelength, flutter-type
instability for large wall damping. With the exception of Pierce (1992), none of
the other nonlinear studies of Tollmien–Schlichting waves reviewed above consid-
ered, explicitly, the possibility of other instability modes. This is despite the fact
that for the wall parameters and Reynolds numbers considered, for example, by
Rotenberry & Saffman (1990), an instability other than a Tollmien–Schlichting wave
would almost certainly be dominant. Surely it would be preferable to examine the
nonlinear intricacies of the Tollmien–Schlichting instability in a context where it
is not likely to be usurped as the route to transition by a flow-induced surface
instability. (See Lucey & Carpenter 1995 for evidence of the role of such instabili-
ties in transition.) Accordingly, one possible application of the present work would
be as an aid in the choice of wall parameters for studies of nonlinear instabil-
ity.

Finally, we mention two numerical studies which have been concerned with the
stability of plane channel flow when only finite sections of the bounding walls are
taken to be compliant. In the first of these studies, by Luo & Pedley (1995), one of the
channel walls was modelled to include a length of massless tensioned membrane. Self-
excited oscillations were discovered for sufficiently large Reynolds numbers. However,
in contrast to the studies discussed previously, the pressure gradient due to the mean
flow was fully taken into account. The second such study was conducted by the present
authors (Davies & Carpenter 1997), who were interested in assessing the spatial
adaptation of Tollmien–Schlichting waves as they pass over the ends of a compliant
panel. Attention was confined to linear disturbances with the same symmetry as the
Tollmien–Schlichting mode. It was discovered that flow-induced surface waves could
be excited at the panel ends by the passage of Tollmien–Schlichting waves. The
identification of flow-induced surface waves from the simulation data was facilitated
by the theoretical analysis presented below.

3. Orr–Sommerfeld equation for a channel with compliant walls
3.1. General formulation

This section outlines the mathematical formulation of the linear stability prob-
lem for plane channel flow between compliant walls. For the type of compliant
wall considered here, an extension of Squire’s theorem can be made, provided the
wall properties are non-dimensionalized in an appropriate manner (Rotenberry &
Saffman 1990). Thus we may confine attention to two-dimensional disturbances. Bas-
ing non-dimensionalization on the undisturbed centreline flow speed and channel
half-width, a non-dimensional disturbance streamfunction is introduced in the form

ψ(x, y, t) = φ(y)ei(αx−ωt), (1)

where x is the streamwise direction, y is normal to the walls, φ the disturbance profile,
and α, ω are the spatial wavenumber and temporal frequency respectively. In general,
both α and ω could be complex valued. The two special cases, α real, ω complex
and α complex, ω real correspond to temporally and spatially growing waves. For the
convective Tollmien–Schlichting instabilities found in flows over rigid walls, spatial
growth is usually of most physical interest (Gaster 1965).
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Substitution of (1) into the linearized vorticity transport equation for the fluid gives
the Orr–Sommerfeld equation for the disturbance profile,

(U − c)(D2 − α2)φ−U ′′φ =
1

iαR
(D2 − α2)2φ , (2)

where U is the dimensionless mean velocity profile, R is the Reynolds number and
D = d/dy. For plane channel flow, with the Reynolds number defined using the
dimensional channel half-width and the centreline velocity, the non-dimensionalized
mean velocity profile takes the form U = 1−y2. The mean flow is driven by a constant
pressure gradient dP/dx = −2/R. It is assumed that in the case of a compliant-walled
channel, the effect of this pressure gradient on the walls can either be ignored, or
balanced by prescribed body forces in each wall. Such an assumption is needed to
ensure that there is a solution to the coupled fluid/wall equations with the walls
statically located at y = ±1 when the mean flow is unperturbed. (There are also
mean-flow shear stresses σ12 = ∓2/R which act at the walls. These have no effect
on the wall motion for the types of compliant wall considered below, where the wall
model excludes tangential motion.)

The mean flow profile is symmetric about the channel centreline, and the upper
and lower channel walls are assumed to have the same compliance. Thus there are
two decoupled problems for symmetric and antisymmetric disturbances; we can either
take φ(y) = φ(−y) or φ(y) = −φ(−y). For the case of a rigid-walled channel, the
stability characteristics are determined by the symmetric φ(y) = φ(−y) disturbances
alone (Drazin & Reid 1981). Since the present study is motivated by an interest
in the stabilizing effect of wall compliance on Tollmien–Schlichting waves, we will
only consider symmetric disturbances. Flow-induced surface instabilities will also be
separable into symmetric and antisymmetric modes, but without further study it is
not clear which symmetry mode will be the least stable. Consequently, the parity
restriction that we will impose on our solutions of the Orr–Sommerfeld equation,
whilst affording a useful simplification for the investigation of behaviour that is
associated, most directly, with the stabilization of Tollmien–Schlichting waves, may
not be justifiable for other applications such as those discussed by Huang (1996).

We will show immediately below that the boundary conditions at the fluid/wall
interface take homogeneous form. The Orr–Sommerfeld equation together with these
boundary conditions then gives an eigenvalue problem. This yields, in principle, a
dispersion relation of the form

F(α, ω, R) = 0 . (3)

3.2. Wall model and boundary conditions

The compliant walls of the channel are modelled as spring-backed plates and are
constrained to move only in the vertical direction. Letting asterisks denote dimensional
quantities and taking η∗ as the vertical displacement of the upper wall from its
equilibrium position, the equation of motion of the upper wall can be written as(

m∗
∂2

∂t∗2
+ d∗

∂

∂t∗
+ B∗

∂4

∂x∗4
− T ∗ ∂

2

∂x∗2
+K∗

)
η∗ = p∗(h) . (4)

The wall parameters are: the plate mass per unit area m∗, the wall damping coefficient
d∗, the flexural rigidity of the plate B∗, the longitudinal tension per unit width T ∗,
and the spring stiffness K∗. The hydrodynamic forcing of the wall is given by the
perturbation fluid pressure p∗ at the mean wall location y∗ = h, where h is the
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dimensional half-width of the channel. The contribution of the normal viscous stress
is ignored since it should be negligible for the large values of the Reynolds number
that are of current interest.

Various choices are possible for non-dimensionalizing the wall equations using the
dimensional channel half-width h, centreline mean fluid velocity Um, fluid density ρ,
and viscosity ν . The choice depends on how the Reynolds number R is varied whilst
keeping the dimensional wall properties fixed; we want to be able to interpret results
for different R as pertaining to the same physical walls. Holding the half-width h,
density ρ, and viscosity ν fixed, so that R = Umh/ν is varied only through changes
in the centreline velocity Um, we obtain the following non-dimensionalization of the
wall properties:

m =
m∗

ρh
, d =

d∗h

ρν
, B =

B∗

hρν2
, T =

T ∗h

ρν2
, K =

K∗h3

ρν2
. (5)

The wall equation can then be written as(
m
∂2

∂t2
+
d

R

∂

∂t
+

1

R2

(
B
∂4

∂x4
− T ∂2

∂x2
+K

))
η̃ = p̃(1) , (6)

where x = x∗/h, t = t∗Um/h, η̃ = η∗/h, and p̃ = p∗/ρU2
m. With this particular scheme

of non-dimensionalization, the previously mentioned extension of Squire’s theorem
holds, justifying attention being restricted to two-dimensional disturbances in the
fluid.

Assuming a normal mode form for the wall displacement, η̃ = η ei(αx−ωt), the
linearized fluid boundary conditions at the upper wall are

Dφ(1) +U ′(1)η = αφ(1)− ωη = 0 . (7)

Eliminating η between the two conditions gives

αU ′(1)φ(1) + ωDφ(1) = 0 . (8)

Writing the perturbation fluid pressure as p̃ = p ei(αx−ωt), the wall equation (6) gives(
−
(
mω2 + i

1

R
ωd

)
+

1

R2
(Bα4 + Tα2 +K)

)
η = p(1) . (9)

On eliminating η, using the second condition stated in (7), we obtain

αφ(1)− iY (α, ω) p(1) = 0 , (10)

where the wall admittance

Y (α, ω) = iω

(
mω2 +

1

R
idω − 1

R2
(Bα4 + Tα2 +K)

)−1

(11)

is the ratio of the wall velocity to the perturbation fluid pressure at the wall. When
the disturbance profile is symmetric, the pressure profile p is antisymmetric, and so
the y-momentum equation for the fluid can be integrated across the channel to give

p(1) = −α
∫ 1

0

(
(αU − ω)φ− iα2

R
φ

)
dy − iα

R
Dφ(1) . (12)

The magnitude of the final term in the above expression is half that of the normal
viscous stress acting at the walls. Consistent with the previously made assumption
that the fluid stresses driving the wall motion may be approximated using the pressure
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alone, this term can be neglected. Similarly, the other term in (12) that involves the
factor 1/R may be dispensed with. Thus we can choose to calculate the pressure using
the approximate expression

p(1) = −α
∫ 1

0

(αU − ω)φ dy . (13)

Substitution into the boundary condition (10) then gives a constraint written entirely
in terms of the disturbance amplitude φ. This constraint and the relation (8) then
provide the boundary conditions for the solution of the Orr–Sommerfeld equation.

3.3. Discretization of the Orr–Sommerfeld equation

The Orr–Sommerfeld equation is solved numerically using a Chebyshev spectral
method (Canuto et al. 1988). The disturbance profile φ is approximated as a finite
series of even Chebyshev polynomials,

φ(y) =
c1

2
+

N∑
k=2

ck T2(k−1)(y) (14)

which ensures that φ is symmetric about the channel centreline. Before discretiza-
tion, the Orr–Sommerfeld equation is integrated indefinitely four times to give (for
symmetric φ)

ω

∫ ∫
φ− α

∫ ∫
Uφ+ 2α

∫ ∫ ∫
U ′φ− α2ω

∫ ∫ ∫ ∫
φ+ α3

∫ ∫ ∫ ∫
Uφ

+
1

iR

(
φ− 2α2

∫ ∫
φ+ α4

∫ ∫ ∫ ∫
φ

)
+ b1 + b2y

2 = 0 , (15)

where
∫∫
φ is shorthand for

∫ y
0

∫ y′
0
φ(y′′) dy′′ dy′ etc., and b1, b2 are integration con-

stants. This procedure is adopted because the integral operators take a more conve-
nient form than the corresponding differential operators, when they are applied to
the Chebyshev expansion for φ. The matrix forms of the operators appearing in (15)
are specified in the appendix of Bridges & Morris (1984).

The Chebyshev expansion for φ is substituted into the left-hand side of the inte-
grated Orr–Sommerfeld equation. The first N coefficients of the resultant Chebyshev
series are then set equal to zero, giving N equations for the N + 2 unknowns
b1, b2, c1, . . . , cN . There is no need to calculate the integration constants b1, b2. Since
they only appear in the two equations obtained by setting coefficients of T0, T2 to
zero, we may replace these equations by two constraints derived from the bound-
ary conditions at the upper wall. In such a manner, we can obtain a system of N
equations for the N unknown Chebyshev coefficients c1, . . . , cN . (Further details of the
procedures involved may be found in Davies 1995.) The discretized Orr–Sommerfeld
equation, incorporating the imposed symmetry and upper-wall boundary conditions,
can then be cast in the form (

4∑
i=0

αiLi

)
c = 0 (16)

where c = (c1, . . . , cN)T is the vector formed by the Chebyshev coefficients of φ and
the N ×N matrices Li are independent of α. To obtain a non-trivial solution of (16),
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α must satisfy the condition

det

(
4∑
i=0

αiLi

)
= 0 . (17)

Equation (17) gives a numerical approximation to the dispersion relation (3), obtained
from the Chebyshev discretization. The form of (16) is different from that usually
found in matrix eigenvalue problems: the eigenvalue α appears to the fourth power
rather than linearly as in the standard problem. Consequently, specialized techniques
are needed for its solution. The particular numerical methods adopted were taken
from the work of Bridges & Morris (1984), to which reference should be made for
further details.

3.4. Preliminary numerical results

The numerical scheme was checked against previous work. For the case of a rigid-
walled channel, the numerically determined eigenvalues agreed exactly with results
obtained by Bridges & Morris (1984). For the compliant-walled case, the largest set of
results that can be compared directly with results from the present study is included
in the work of Green & Ellen (1972), who considered channels with walls modelled as
tensioned membranes. In a more recent investigation, Rotenberry (1992) formulated
the problem for the same wall model as is used in current work, but only gave results
from the numerical solution of the Orr–Sommerfeld equation for a limited range of
wall parameters. Good agreement was obtained between results determined using the
present numerical methods and those given in the two earlier studies. For instance,
points on the neutral stability curves given by Rotenberry could be reproduced. These
curves show the stabilization of Tollmien–Schlichting waves as the wall compliance
is increased, for the simplistic situation where the wall motion is governed by a form
of Hooke’s law, i.e. the only non-zero wall parameter is the spring stiffness.

Figure 1 shows neutral stability curves associated with the Tollmien–Schlichting
instability, for the case of channels whose walls are modelled as untensioned spring-
backed plates with no internal damping. Such a wall model was used by Carpenter &
Garrad (1985) in their investigation of the stability of Blasius flow over Kramer-type
compliant surfaces.† It can be seen from figure 1 that the effect of increasing wall
compliance is to shrink the neutral stability curve, causing it to close into a single
loop which then vanishes for sufficiently low values of the wall stiffness parameters
B and K . Unlike the situation for Blasius flow, the neutral stability loop does not
appear to break into two pieces; there is no remnant of the rigid-wall curve for
higher Reynolds numbers. This qualitative difference must be due to the different
non-dimensionalizations of the wall properties in Blasius and plane channel flow. For
Blasius flow, the Reynolds number is varied through changes in the boundary layer
thickness: different values of R correspond to different streamwise locations, the mean
flow velocity being held constant. It follows that the effective non-dimensional spring
stiffness increases with the Reynolds number, so at large enough values of R the wall
behaves as if it were rigid. In contrast, for the case of channel flow, the fact that the
Reynolds number is varied via changes in the mean flow velocity has the consequence
that the effective wall parameters all decrease as R increases, with the exception of

† If the fluid is taken to be water and the channel half-width is 1 mm, then the curve for
a non-dimensional spring stiffness of K = 6 × 107 corresponds to a Kramer surface that has
dimensional properties in the range considered by these authors; in particular it closely matches a
wall with Young’s modulus E = 0.5× 106 N m−2.
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Figure 1. Neutral curves for the Tollmien–Schlichting instability. The dotted line is for the
rigid-walled case. The solid lines correspond to compliant walls with (a) K = 6×107, (b) K = 2×107,
(c) K = 1× 107, and B = 4K , m = 2, T = d = 0.

the wall mass which remains unchanged. Thus, the stabilizing effect of the channel
walls is enhanced at large Reynolds numbers and it is not surprising that the neutral
curves become confined to finite values of R. Similar results were found by Hains &
Price (1962) for channels with walls modelled as tensioned membranes.

Figure 2 shows the effect of wall damping on the Tollmien–Schlichting mode. In
agreement with earlier studies, it can be seen to be weakly destabilizing. Anticipating
the results of the analysis of flow-induced surface instabilities given later, figure 3
displays neutral curves for travelling wave flutter. The wall parameters are the same
as those taken in figure 2, except that for the damped wall the level of damping has
been reduced by a factor of a hundred. For travelling wave flutter, wall damping
can be seen to act in the conventional stabilizing fashion. Furthermore, the effect is
far stronger than that found for the Tollmien–Schlichting waves. Even for the low
level of damping considered (recall that the effective level of damping is determined
by d/R), the onset of travelling wave flutter is postponed to an appreciably higher
Reynolds number.

4. Flow-induced surface instabilities
We will now develop an approximate analytic theory for the description of the flow-

induced surface instabilities which occur when the channel walls are made sufficiently
compliant. The approach taken is similar to that which has been used in previous
work for the case of Blasius flow. However, in many respects the theory is more
straightforward for the channel, owing to the relative simplicity of the mean flow
profile U = 1 − y2. In particular, the various integrals that arise in calculating the
perturbation fluid pressure at the upper channel wall are easier to evaluate. Thus,
treating channel flow as a model problem, we will identify forms of behaviour that
would be difficult to discern for the case of Blasius flow.

In §3 the governing equation describing the wall motion was used to provide
boundary conditions to be imposed on the fluid. In this way an eigenvalue problem
arises in which the wall motion equation only appears implicitly. The equation of
motion for the fluid, i.e. the Orr–Sommerfeld equation, plays the primary role. For
flow-induced surface instabilities the roles of the wall equations and the fluid equations
can be reversed. Approximate expressions for the fluid pressure at the wall are first
derived. These are then substituted into the wall motion equation to give an analytic
dispersion relation from which eigenvalues can be obtained directly.
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Figure 2. Neutral curves showing the effect of wall damping on the Tollmien–Schlichting instability.
Dotted line d = 0, solid line d = 1000. The other wall parameters are K = 6× 107, B = 4K , m = 2,
T = 0.
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Figure 3. Neutral curves showing the effect of wall damping on travelling wave flutter. Dotted line
d = 0, solid line d = 10. The other wall parameters are the same as in figure 2.

4.1. Inviscid shear layer theory

Inviscid perturbations from the mean flow U = 1 − y2 are governed by Rayleigh’s
equation

(U − c)(D2 − α2)φ−U ′′φ = 0 , (18)

where c = ω/α is the phase speed and, as before, φ is the profile of the disturbance
streamfunction. There are two linearly independent solutions, which can be obtained
via expansion in the wavenumber α:

φ1 = (U − c)
(

1 + α2

∫ y

y0

1

(U − c)2
dy

∫ y

y0

(U − c)2 dy + · · ·
)
, (19)

φ2 = (U − c)
(∫ y

y0

1

(U − c)2
dy

+ α2

∫ y

y0

1

(U − c)2
dy

∫ y

y0

(U − c)2 dy

∫ y

y0

1

(U − c)2
dy + · · ·

)
. (20)
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These expressions were first obtained by Heisenberg (1924). The lower limit y0 in the
integrals is arbitrary. The path of integration needs to be specified when there is a
critical point, i.e. when 0 < cr < 1, where cr is the phase speed of a near-neutral wave.
If we choose to take y0 = 0, then the two solutions φ1, φ2 correspond to symmetric
and antisymmetric disturbances respectively. Continuing to restrict attention to the
symmetric case, we take

φ = A (U − c)
(

1 + α2

∫ y

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy + · · ·
)
, (21)

where A is some constant. For inviscid disturbances the single boundary condition on
the fluid at the upper wall takes the form

φ(1) = c η . (22)

The constant A can thus be determined as

A =
− η

1 + α2

∫ 1

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy + · · ·
. (23)

Using the y-momentum equation for inviscid disturbances, the perturbation fluid
pressure at the upper wall can be calculated from equation (13). Hence we obtain

p(1) = α2P(α, c) η (24)

where

P(α, c) =

∫ 1

0

(U − c)2 dy + α2

∫ 1

0

(U − c)2 dy

∫ y

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy + · · ·

1 + α2

∫ 1

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy + · · ·
.

(25)

Substituting this expression for the wall pressure into the governing equation (4) for
the wall motion then gives the dispersion relation

m
(
c2 − c2

0

)
+P(α, c) + i

(
c/α
)
d̄ = 0 (26)

where

c0 =
1

Um

[
1

m

(
B̄α2 + T̄ +

K̄

α2

)]1/2

(27)

is the dimensionless free wave speed for the wall at a given wavenumber α. The wall
mass m is non-dimensionalized in the manner indicated earlier, but, since viscosity is
no longer inherent to the problem, the other wall parameters have been treated in a
different fashion. Thus we define

d̄ =
d∗

ρUm

, B̄ =
B∗

ρh3
, T̄ =

T ∗

ρh
, K̄ =

K∗h

ρ
. (28)

The damping parameter d̄ is non-dimensional, but all the other quantities have the
dimensions of a squared velocity. This is convenient for obtaining expressions for the
critical velocities that determine the onset of instability.

The expression (25) for the quantity P can be expanded formally as

P(α, c) = P0(c) + α2P1(c) + · · · (29)
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where the first two expansion coefficients are given by

P0(c) =

∫ 1

0

(U − c)2 dy, (30)

P1(c) = −
∫ 1

0

1

(U − c)2
dy

(∫ y

0

(U − c)2 dy

)2

. (31)

(Some manipulation of the integrals is required in order to obtain P1 in the form
stated.) Using the parabolic profile of U, the integral for P0 is simple to evaluate,
giving

P0(c) = c2 − 4
3
c+ 8

15
. (32)

The integral defining P1 is also straightforward to evaluate, though account needs to
be taken of the singularity which occurs when there is a critical point. The detailed
form of the integral is given later.

Use of the expansion (29) fails to make apparent some important features contained
within the inviscid shear layer theory. In particular, it hinders the identification of
a branch of inviscid solutions which corresponds to the Tollmien–Schlichting waves.
Nevertheless, we will begin by employing the expansion in an uncritical manner, since
it affords a means of obtaining tractable approximations to the inviscid dispersion
relation. Moreover, such a form of expansion was utilized in previous studies for the
case of Blasius flow (Carpenter & Garrad 1986; Carpenter & Gajjar 1990).

For small enough wavenumbers α we can hope to obtain an acceptable approxi-
mation by replacing P with P0. This yields the dispersion relation

m
(
c2 − c2

0

)
+ c2 − 4

3
c+ 8

15
+ i
(
c/α
)
d̄ = 0 , (33)

which can be solved to obtain stability boundaries. The analysis is simpler for the
case of temporal instabilities, for which c is allowed to be complex-valued whilst α is
kept real. (Critical layer and wall layer effects, which are discussed in detail later, are
more readily treated within the framework of a temporal analysis. Restricting α to be
real also avoids the necessity of isolating any evanescent modes (Carpenter & Morris
1990).) When there is no wall damping, (33) is a quadratic in c with real coefficients.
Its two solutions are

c =
1

m+ 1

(
2
3
± r
)

(34)

where

r = (m(m+ 1)c2
0 − 4

45
(6m+ 1))1/2 .

Thus there are no real-valued solutions for c if

c2
0 6

4

45

6m+ 1

m(m+ 1)
(35)

which, using (27), shows that there is instability provided Um > Uf , where

Uf =
3

2

(
5(m+ 1)

6m+ 1

)1/2

U0 , (36)

and U0 is defined by

U0 =

(
min
α

[
B̄α2 + T̄ +

K̄

α2

])1/2

. (37)

The subscript chosen to label the critical flow velocity Uf denotes the identification of
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the instability as flutter instability. It has also been described as a Kelvin–Helmholtz
instability by Benjamin (1960) and Landahl (1962), owing to its resemblance to the
well-known shear-flow instability. (Throughout this paper the term ‘flutter’ will be
reserved for the strong instability that can arise when the two branches of solutions
associated with flow-induced surface waves coalesce or, more generally, interact.) The
quantity U0 is m1/2 times the minimum of the dimensional free wave speed. In effect,
it characterizes the lowest possible stiffness of the walls. There is no difficulty in
showing that the minimum occurs for the non-dimensional wavenumber

αc =

(
K̄

B̄

)1/4

(38)

and takes the value

U0 =
(
2(B̄K̄)1/2 + T̄

)1/2
=

(
2(B∗K∗)1/2 + T ∗

ρh

)1/2

. (39)

These results are virtually identical to those given in equations (3.6) and (3.7) of
Carpenter & Garrad (1986) for the Blasius boundary layer, provided the displacement
thickness is used instead of the half-channel width. It also turns out that 1/αc – or,
equivalently, the wavelength of the slowest free wave – is, arguably, the most important
lengthscale characterizing the compliant wall. It is not completely clear why this is
so. It was found by Carpenter (1987) and Carpenter & Morris (1990) to be a key
parameter in optimizing the compliant-wall properties for maximum transition delay
in the Blasius boundary layer, the walls with the best performance having values of
αc close to the wavenumber, αts, of the most unstable Tollmien–Schlichting wave. A
heuristic explanation for this is attempted in Davies (1995). In the present context
it will be shown in §4.5 that the character of the eigenmode spectrum is strongly
dependent on whether αc � αts or they are comparable in value.

If small levels of wall damping are introduced, then the solutions (34) are perturbed
to

c =
1

m+ 1

(
2

3
± r − id̄

2α

(
1± 2

3r

))
. (40)

In this case instability sets in when r = 2/3, which implies that c = 0. Thus, the
instability takes the form of a standing wave at its onset. From the approximated
dispersion relation (33), it can be seen that waves with c = 0 are only possible if there
is a solution to

c2
0 =

8

15m
(41)

for some value of the wavenumber α. This yields the condition that Um > Ud, where
it is simple to show that

Ud =
(

15
8

)1/2
U0 . (42)

The subscript d indicates that the instability can be identified as divergence. For flow
velocities Um slightly greater than Ud, the divergence instability takes the form of
a slowly travelling wave, which propagates in the downstream direction. From the
results (36) and (42) it can be confirmed that Uf > Ud, so divergence will always set
in at a lower flow speed than the flutter instability whenever there is non-vanishing
wall damping.

For the special case of a channel with compliant walls described as unsupported
tensioned membranes, i.e. when K∗ = B∗ = 0, T ∗ 6= 0, m∗ 6= 0, expressions equivalent
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to (36), (42) were noted by Green & Ellen (1972). With such a restricted wall model,
the dimensional free-wave speed takes the constant value (T ∗/m∗)1/2, independent of
the wavenumber. According to the lowest-order approximation obtained from the
inviscid theory, there is then no specific critical wavenumber at which instability
sets in: both flutter and divergence become unstable for all disturbance wavelengths
as soon as the respective onset speed has been exceeded. It would appear that
Green & Ellen were unable to use their expressions for onset velocities† to provide
a detailed analysis of the results they obtained by direct numerical solution of the
Orr–Sommerfeld equation. This shortcoming stems from the fact that they did not
go on to study the travelling wave flutter instability.

4.2. Travelling wave flutter

We now investigate the effect of including the critical point in the inviscid theory. For
neutral disturbances with 0 < c < 1 there is a point yc = (1− c)1/2 where U(yc) = c.
This is a singular point of Rayleigh’s equation and gives rise to a logarithmic
singularity in the integrals defining the solution for φ given in the previous section.
Although such an inviscid solution will not be valid in the immediate vicinity of the
critical point, it still holds elsewhere, provided the path in the integrals is suitably
deformed. By matching solutions of the inviscid problem to solutions of the Orr–
Sommerfeld equation in the limit of large Reynolds numbers, the appropriate path
can be determined. Since U ′(yc) < 0, the integral path needs to be indented above the
real axis at the critical point. This procedure only gives acceptable results provided
there is sufficient separation between the critical layer and the viscous layer at the
upper wall (Drazin & Reid 1981). (When the two layers overlap, it may still be
possible to obtain good predictions, as has been demonstrated by Healey (1995) in
connection with the Tollmien–Schlichting instability for Blasius flow over a rigid wall.)

In the calculation of the fluid perturbation pressure at the upper wall, taking
account of the critical point in the manner just described introduces a non-zero
imaginary part into the quantity P occurring in equation (24). This stems from the
singularity at yc = (1 − c)1/2 in the integral for the expansion coefficient P1 defined
in (31). The imaginary part of P gives rise to a phase difference between the wall
pressure and wall displacement, which allows the fluid to do work on the wall.
Thus there is the possibility of a destabilizing energy transfer to the wall. Such a
mechanism was first identified for water waves by Miles (1957). The same mechanism
was shown by Benjamin (1960) to apply in the case of flow over a compliant wall.
More recently, Carpenter & Garrad (1986) have introduced the term travelling wave
flutter to describe the associated instability.

To study the onset of travelling wave flutter instability we first solve the dispersion
relation (26) in the same way as in the last section, i.e. starting from the approximation
P = P0. If Um < Uf and there is no wall damping, this gives two neutrally stable
solutions. We can then consider how these solutions are perturbed when we replace
P0 by P0 + α2P1. The solutions are shifted from c to c+ ∆c, where

∆c =
− α2P1

2(m+ 1)c− 4
3

. (43)

It will be shown that if 0 < c < 1 the imaginary part of P1 is negative. Thus we

† In order to facilitate comparisons with the Tollmien–Schlichting instability, they gave their
results in terms of critical Reynolds numbers. Since the Reynolds number is varied only through
the centreline velocity of the mean flow, this is equivalent to giving critical flow velocities.
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get instability provided we also have c > 2/3(m+ 1). From the form of the solutions
given in (34) it can be seen that this further condition holds for one of the waves but
not for the other. Only the wave which travels the faster in the downstream direction
can become unstable; the other wave is stabilized if it propagates downstream and
unaffected if it propagates upstream. The onset of the instability is thus determined by
the condition that there is a wave with c = 1. (The stability boundary at c = 2/3(m+1)
coincides with that which is predicted for the flutter instability. As will be seen below,
it corresponds to a higher flow velocity than that needed to destabilize travelling wave
flutter.) Substituting c = 1 into the dispersion relation (33), where P is replaced by
P0, gives the condition

c2
0 = 1 +

1

5m
(44)

This is only possible provided Um > Ut, where

Ut =

(
1

m+ 1
5

)1/2

U0 . (45)

Using the results (42) and (45), it is straightforward to show that divergence sets in
at a lower flow speed if the plate mass satisfies m < 1/3, whilst travelling wave flutter
sets in first if m > 1/3. It may also be checked, using (36), that the flutter instability
is predicted to always set in at an even higher flow speed.

For vanishingly small values of the plate mass m, the critical velocity Ut tends to
a finite limit, so the travelling wave flutter instability persists. This is in apparent
contrast to the situation found in Blasius flow (Carpenter & Garrad 1986), where the
corresponding formula is

UB
t =

(
1

m

)1/2

U0 . (46)

In this case the instability sets in at indefinitely high flow speeds as m decreases
to zero. The difference between the two cases is connected to the assumption that
potential theory provides a good first approximation for the flow over a flat plate.
In previous studies of Blasius flow, the critical layer has been accounted for by
perturbing the expression for the wall pressure from the result given by potential
theory. If we assumed that the critical layer could be treated in the same way for
channel flow, then the formula obtained for the critical velocity would be identical to
the one given for Blasius flow. However, when the parabolic profile of the channel
flow is considered, an effective mass is contributed by the fluid. This appears as the
fraction 1/5 in the denominator in (45).

These remarks suggest that a re-examination of the situation for Blasius flow may
be in order. By analogy with the result found for channel flow, it could be anticipated
that the effect of explicitly considering the profile of the mean flow would be to
introduce a fluid mass to be added to the wall mass in (46). The fact that this is
actually the case is implicit in the results of Carpenter & Gajjar (1990). Restricting
attention to two-dimensional disturbances, and only retaining inviscid terms, their
expression [3.32] for the fluid perturbation pressure at the wall can be written as

pBw = −
(
α(1− c)2 + α2

[
1− 1

H
− 2(1− c)

]
− α2(1− c)2I∞

)
η (47)

where H is the ratio of displacement to momentum thickness (= 2.591 for the Blasius
velocity profile) and the term involving the quantity I∞ accounts for the phase shift
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due to the critical layer. The first term in (47) gives the pressure according to potential
theory. The terms enclosed in the square brackets can be interpreted as the mean-flow
profile correction to the result given by potential theory. Following a similar procedure
to that described above we obtain

UB
t =

(
1

m+ 1− 1/H

)1/2

U0 (48)

for the onset flow speed of travelling wave flutter. Thus for Blasius flow it can also be
argued that travelling wave flutter will persist for vanishingly light plates. However, it
should be noted that the physical interpretation of the expression giving the onset flow
speed is less straightforward for Blasius flow than it is for the channel. For channel
flow there is a natural lengthscale, given by the channel half-width h, which can be
used to non-dimensionalize the wall mass. There is no such lengthscale available for
Blasius flow. Instead, use must be made of the boundary layer displacement thickness
δ∗, which is only defined locally at each streamwise position. Writing (48) in explicit
dimensional form gives

UB
t =

(
2(B∗K∗)1/2 + T ∗

m∗ +
(
1− 1/H

)
ρδ∗

)1/2

. (49)

It can be seen that the fluid mass to be added to the wall mass depends on the
streamwise location via the local boundary layer thickness. The effective fluid mass
increases downstream.

We may well expect the inclusion of the critical layer to have some effect on the
onset of the divergence instability. Divergence is associated with the solution given
by (34) with the minus sign taken. Instability is predicted when the corresponding
wave changes its direction of propagation from upstream to downstream. It has been
noted previously that when the critical layer is accounted for, the shift ∆c produced
in the velocity of this wave is such that it is stabilized if it propagates downstream.
Thus, we would expect the critical layer to have a stabilizing effect on divergence.
However, without further detailed investigation, we cannot be sure that the onset of
divergence instability will be postponed to higher flow velocities. Divergence sets in
when c = 0, which is precisely where the theory presented for the critical layer would
be expected to become invalid.

The effects on stability of including the critical layer can be described from a
broader point of view using the energy analysis developed by Landahl (1962) and
Benjamin (1963). Waves are classed as type A, B, or C using the concept of an
activation energy†. This classification can then be employed to understand the effects
of irreversible energy transfers to and from the compliant wall. Class-A waves are
stabilized/destabilized when there is a transfer of energy to/from the wall. For Class-
B waves the opposite is true. Class-B behaviour is what would be anticipated in more
conventional circumstances. Waves described as Class C are relatively indifferent to
the effects of irreversible energy transfer. They are destabilized by processes involving
conservative energy exchanges. Thus the flutter instability can be viewed as Class C.
Travelling wave flutter is Class B, since it is destabilized when there is a transfer of
energy to the wall due to the critical layer. For divergence the same energy transfer
mechanism has a stabilizing effect, so divergence appears to be a Class-A instability.

† The terms negative- and positive-energy waves have also been used to denote Class A and
B waves. The alternative nomenclature stems from the independent discovery of similar physical
principles in the context of plasma physics (Briggs 1964).
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The utility of the energy classification can be seen when the effect of introducing
wall damping is considered within the same framework. Wall damping provides a
means of irreversibly removing energy from the wall. Thus the fact that divergence
is destabilized by wall damping is seen to be consistent with its Class-A behaviour
with respect to the critical layer. Similarly, we would expect the travelling wave flutter
instability to display its Class-B character by being stabilized by damping. This can
be confirmed directly by inspecting (40). The solution given by taking the plus sign
corresponds to travelling wave flutter.

We now return to the evaluation of the quantity P1(c), the imaginary part of which
is associated with the effect of the critical layer on stability. Using the parabolic form
of the velocity profile U, the integral in (31) can be manipulated to give

P1(c) = − 1

225

(
Q(c) + 32(1− c)4

∫ 1

0

1

(1− c)− y2
dy

)
(50)

where

Q(c) = 9
7
− 42

5
(1− c) + 97

3
(1− c)2 − 64(1− c)3 − 32

c
(1− c)4 .

The 1/c singularity in Q(c) suggests the breakdown of the present approximation
for small values of c. When the phase velocity is such that 0 < c < 1, the path in
the remaining integral term in (50) needs to be indented above the critical point at
yc = (1− c)1/2. A simple calculation then gives the imaginary part of P1 as

Im (P1(c)) = −16π

225
(1− c)7/2 . (51)

So Im (P1) < 0, as claimed earlier. If there is no critical layer, then for real values of
c the integral appearing in (50) is real and so is P1.

From the expressions (32) and (50) we can specify both P0 and P1 in terms of
known functions of the wave velocity c. Using the approximation P = P0 + α2P1

in the dispersion relation (26), we obtain an equation written explicitly in terms of
c and α. It is then a straightforward matter to solve this equation numerically in
order to determine the values of the wave velocity associated with each value of the
wavenumber. The computational requirements are very slight, compared with what
is needed for the direct numerical solution of the Orr–Sommerfeld equation.

4.3. Viscous wall layer corrections

Results obtained by solving (26) in the manner outlined above can be shown to
provide a fairly accurate basis for describing the travelling wave flutter instability.
Nevertheless, it is still informative to see if the theory can be further improved by
taking account of the effects of the viscous wall layer in the fluid. For channel flow this
can be achieved with little additional labour. In contrast, improving the corresponding
theory for Blasius flow is quite difficult (Carpenter & Gajjar 1990), partly because of
the need to account carefully for the details of the mean flow profile.

For large values of the Reynolds number R there are two regions where viscous
effects can be considered important. In addition to the critical layer centred on the
position of the critical point, there is a viscous layer adjacent to the wall. These layers
have widths of O{(αR)−1/3} and O{(αR)−1/2} respectively. It is assumed that they do
not overlap. Violation of this assumption can be expected to cause the breakdown of
the theory for small enough values of c. We also suppose that there are approximate
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solutions to the Orr–Sommerfeld equation which take the form

φ = AΦ+ aφν (52)

where Φ is an inviscid solution determined as before, and φν is a rapidly varying
viscous solution which is insignificant outside the wall layer. The constants A and a
are determined by the boundary conditions on the fluid at the wall. The composite
solution (52) is invalid within the critical layer, since no direct account of viscosity
is taken there. However, it will be shown that this is not important so far as the
calculation of the wall pressure is concerned.

The inviscid part of the solution is specified in the same form as the solution
considered previously. We take it to be defined by

Φ = (U − c)
(

1 + α2

∫ y

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy + · · ·
)
. (53)

The viscous solution is obtained by examining the Orr–Sommerfeld equation in the
vicinity of the wall. Introducing the scaled normal distance from the wall ŷ = (1−y)/ε,
where ε = (αR)−1/2, the Orr–Sommerfeld equation can be written as

(D̂4 + icD̂2)φ̂ = O(ε) (54)

with D̂ = d/dŷ and φ̂(ŷ) = φ(y) . This has the general solution

φ̂(ŷ) = C1 + C2ŷ + C3 exp(e−iπ/4c1/2 ŷ) + C4 exp(−e−iπ/4c1/2 ŷ) + O(ε) . (55)

The first two terms correspond to the inviscid solution, whilst the third grows rapidly
beyond the wall layer. The fourth term decays away from the wall and can thus be
identified with the desired viscous solution φν . Hence we define

φν(y) = exp
(
−e−iπ/4(αcR)1/2 (1− y)

)
. (56)

This is normalized so that φν(1) = 1 .
Using the boundary conditions (7) at the wall, the constants A, a can be obtained

in the general form

A =

(
cφ′ν1 +U ′1φν1

Φ1φ
′
ν1 − φν1Φ′1

)
η, a = −

(
cΦ′1 +U ′1Φ1

Φ1φ
′
ν1 − φν1Φ′1

)
η (57)

where we have introduced the notation Φ1 = Φ(1), Φ′1 = DΦ(1) etc. Making use of
the facts that φν1 = 1 and φ′ν1 is O(1/ε), these expressions can expanded in terms of
ε to give

A =

(
1 +

1

φ′ν1

(
U ′1
c

+
Φ′1
Φ1

))
cη

Φ1

+ O(ε2), (58)

a = − 1

φ′ν1

(
U ′1
c

+
Φ′1
Φ1

)
cη + O(ε2) . (59)

The constant a is O(ε). Thus it can be seen that retaining an O(ε) term in the definition
of φν would have made no difference to the O(ε2) approximation for the composite
solution φ.

The quantity in brackets which appears multiplied by 1/φ′ν1 in the expressions for
both the constants can be rewritten in terms of the previously defined quantity P(α, c).
It is straightforward to see that the definition of P given in §4.1 amounts to taking

P = − c

Φ1

∫ 1

0

(U − c)Φ dy . (60)
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If the inviscid wall pressure associated with the profile Φ is computed using the x-
momentum equation for inviscid disturbances, and then again using the y-momentum
equation, the following equality can be derived:

U ′1Φ1 + cΦ′1 = −α2

∫ 1

0

(U − c)Φ dy, (61)

from which it follows that

U ′1
c

+
Φ′1
Φ1

=
α2

c2
P . (62)

Hence we can finally write

A =

(
1 +

eiπ/4

(αcR)1/2

α2

c2
P
)
cη

Φ1

+ O(ε2), (63)

a = −
(

eiπ/4

(αcR)1/2

α2

c2
P
)
cη + O(ε2) (64)

and thus obtain

φ =

(
Φ

Φ1

+
eiπ/4

(αcR)1/2

α2

c2
P
(
Φ

Φ1

− φν
))

cη (65)

as the composite solution to the Orr–Sommerfeld equation. This is an O(ε2) approxi-
mation to the exact solution, except within the critical layer.

The wall pressure corresponding to an exact solution of the Orr–Sommerfeld solu-
tion can be found using the expression (12). We aim to derive an o(ε) approximation
for the wall pressure by substituting the composite solution (65) for φ. At this level of
accuracy the terms in (12) which involve the factor 1/R can be shown to be negligible.
The wall derivative satisfies Dφ(1) = −U ′(1)η, and consequently has a magnitude
of O(1). Thus the term involving this derivative gives an O(ε2) contribution to the
pressure. (Note that this term is in fact just an O(1) multiple of the normal viscous
stress acting at the wall. We ought to be able to neglect it in order to maintain
consistency with the previous assumption that the forcing of the wall is given by the
fluid pressure alone.) The integral multiplied by 1/R would be expected to have a
similar magnitude to the integral appearing in the first term. Thus by comparison it
can be omitted as giving rise to only an O(ε2) quantity.

Having neglected the terms in (12) containing factors of 1/R, we are left with a
single integral which determines the wall pressure. Since the constant a is O(ε) and
the viscous solution φν is negligible outside the wall layer, which itself has width O(ε),
it can be seen that the contribution of the viscous part of the composite solution to
the integral is O(ε2). Hence the integral, and consequently the wall pressure, can be
determined using the inviscid part of the solution alone. At this point it could be
objected that no account has been taken of the fact that the composite solution does
not hold in the critical layer. This might invalidate the approximation procedure just
described. However, it can be argued that even if an O(1) viscous correction needed to
be made to the solution within the critical layer, it would not affect the calculation of
the wall pressure to the order of accuracy considered. The quantity (U − c) vanishes
at a point yc in the critical layer, so near this point we have (U − c) ' U ′c(y − yc).
Because (y − yc) is O(ε2/3) in the critical layer, the same must be true of (U − c).
Integrating an O(1) multiple of (U− c) across the critical layer thus gives a correction
to the wall pressure which is only O(ε4/3).
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Putting together the arguments given above, we arrive at the following approxima-
tion for the wall pressure:

p(1) = −α2A

∫ 1

0

(U − c)Φ dy + o(ε) . (66)

On using the expression (63) for A, and applying the definition of P in the form given
in (60), this yields

p(1) = α2

(
1 +

eiπ/4

(αcR)1/2

α2

c2
P
)
Pη + o(ε). (67)

This should be compared with the corresponding expression (24) obtained from
inviscid theory. It can then be seen that the effect of accounting for the viscous wall
layer is to replace P by Pν where

Pν =

(
1 +

eiπ/4

(αcR)1/2

α2

c2
P
)
P . (68)

The modification required in the inviscid dispersion relation (26) is obtained in the
same way.

The stability effects of bringing the viscous wall layer into consideration can now
be found in a manner analogous to that used previously in studying the critical layer.
We begin by solving the dispersion relation using the first approximation Pν = P0.
Then taking the O(α2) approximation

Pν = P0 + α2

(
P1 +

eiπ/4

c2(αcR)1/2
P 2

0

)
(69)

the shift in the wave velocities can be found in the same way as before. The expression
for ∆c corresponding to the inviscid result (43) is readily seen to be

∆c =
− α2

2
(
(m+ 1)c− 2

3

) (P1 +
eiπ/4

c2(αcR)1/2
P 2

0

)
. (70)

In the inviscid theory, it was shown that the destabilization of travelling wave flutter
is associated with the introduction of a negative imaginary part in P1 when there is a
critical layer. In physical terms, a phase difference is set up between the wall pressure
and wall displacement, allowing an irreversible transfer of energy by the fluid to the
wall. When the viscous wall layer is accounted for, there is a further shift in phase
between the pressure and displacement. Using the result (51) for Im(P1) we obtain

Im(∆c) =
− α2

2
(
(m+ 1)c− 2

3

) (−16π

225
(1− c)7/2 +

1

c2(2αcR)1/2
P 2

0

)
. (71)

(If there is no critical layer then the first term in the large brackets should be dropped.)
From this it can be seen that, as found previously by Carpenter & Gajjar (1990)
for the Blasius boundary layer, the effect of the wall layer is to stabilize travelling
wave flutter, in direct opposition to the effect of the critical layer. On the basis of
the energy classification discussed earlier, it would then be expected that the effect of
the wall layer on divergence would be destabilizing. Formally, this can be deduced
directly from (71); the solution corresponding to divergence has c < 2/3(m + 1).
However, it should be recalled that the viscous wall layer correction was obtained
under the assumption that the wall and critical layers remain well separated. Such
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Figure 4. Comparison of neutral stability curves for travelling wave flutter computed via direct
numerical solution of the Orr–Sommerfeld equation (solid lines) with results obtained from the
analytic theory (dotted lines). The wall parameters are (a) K = 6 × 107, (b) K = 2 × 107, (c)
K = 1× 107, and B = 4K , m = 2, T = d = 0.

an assumption will not be valid for the small phase speeds that, according to the
lowest-order inviscid theory, mark the onset of divergence instability.

4.4. Numerical results for travelling wave flutter

The predictions of the approximate analytic theory for the travelling wave flutter
instability are now compared with results obtained by direct numerical solution of
the Orr–Sommerfeld equation. The dispersion relation obtained when the viscous wall
layer is included can be solved using a slight modification of the method outlined at
the end of §4.2. We just need to replace P by Pν .

Figure 4 shows computed neutral stability curves for travelling wave flutter. The
sets of compliant wall parameters are the same as those chosen for the Tollmien–
Schlichting neutral stability curves previously plotted in §3.3. It can be seen that
the agreement between results obtained from the analytic theory and the numerical
solution of the Orr–Sommerfeld equation is extremely good. The curves lie directly
on top of each other, except at some larger values of the wavenumber α where there
is a slight discrepancy. (The analytic theory might not be expected to hold for such
values of α since it relies on a low-wavenumber expansion. An explanation of why the
expansion continues to give acceptable approximations even when α ≈ 4 will be given
below in §4.5.2.) A comparison of the curves shown for the travelling wave flutter in
figure 4 with the corresponding results for Tollmien–Schlichting waves displayed in
figure 1 makes clear the opposite effects of wall compliance on the two instabilities.

The analytic theory used to obtain the curves in figure 4 contains the viscous wall
layer correction described in the previous section. When the effect of viscosity is thus
included, the results derived from the inviscid theory, in particular the expressions for
instability onset velocities, need to be presented in terms of Reynolds numbers. This
causes no difficulty, since the Reynolds number is only varied through changes in the
centreline velocity of the mean flow. If we fix the dimensional channel half-width h
and kinematic viscosity ν, then we can define

Rc = Uch/ν (72)

to be the critical Reynolds number corresponding to the critical velocity Uc. To
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obtain a consistent description, we also need to non-dimensionalize the compliant
wall properties in the fashion described earlier in §3. This amounts to writing

mc2
0 = (Bα2 + T +K/α2)/R2 , d̄ = d/R (73)

for the free-wave speed and damping terms that occur in the inviscid dispersion
relation (26) and the wall-layer-corrected version.

Figure 5 compares neutral stability curves computed from the approximate analytic
theory with and without any wall-layer correction. It can be seen that there is a
significant discrepancy between the two curves. Although the critical wavenumber
is unchanged, the Reynolds number for the onset of instability is poorly predicted
when the wall layer is not included. This stems from the fact that the growth rates
determined from the inviscid theory with no wall-layer correction are quite weak near
the expected onset. Thus the instability can be readily held in check by the stabilizing
effect of the wall layer. It is straightforward to estimate the extent to which the onset
of travelling wave flutter is delayed, using the result (71) which gives the net change
in the temporal growth rate due to the effects of the critical and wall layers. When
the wall layer is included, the phase velocity of the wave which first becomes unstable
is no longer given by c = 1, but is instead displaced to a lower value by an amount

∆ct = −
(

9

16π

)2/7
1

(2αcRt)
1/7

. (74)

The corresponding shift in the Reynolds number can then be estimated from the
inviscid dispersion relation. Denoting by ∆Rt the increase in the critical Reynolds
number for the onset of travelling wave flutter from the value Rt obtained when the
effect of the wall layer is neglected, it is simple to show that

∆Rt
Rt

= −
(
m+ 1

3

m+ 1
5

)
∆ct =

(
m+ 1

3

m+ 1
5

)(
9

16π

)2/7
1

(2αcRt)
1/7

. (75)

Thus ∆Rt/Rt is O(1/R1/7), and so is appreciable even for the relatively large values of R
that are of current interest. For the sets of compliant wall properties used in obtaining
figure 4, the fractional increases in the critical Reynolds number estimated from (75)
lie in the range 15–20%. These estimates give good first approximations to the
accurate values determined from either the exact solution of the wall-layer-corrected
inviscid dispersion relation or the direct numerical solution of the Orr–Sommerfeld
equation. For waves corresponding to points within the unstable regions shown in
figure 4, results from the inviscid theory with and without the wall layer correction are
in closer agreement with each other; the relative effect of the wall layer is diminished
for larger growth rates.

As mentioned in the Introduction, Carpenter et al. (1983), Carpenter & Garrad
(1985) and others, found that the inclusion of damping in the form of a viscous
fluid substrate or viscoelastic losses could lead to the coalescence of the Tollmien–
Schlichting and travelling-wave-flutter modes. Figure 6 shows that a similar effect can
be found in the present case for sufficiently large values of the wall damping parameter
d. It can be seen that the extensive region of instability associated with travelling wave
flutter in the absence of wall damping is pushed back to higher Reynolds numbers
when damping is introduced, whilst the region of Tollmien–Schlichting instability is
enlarged. When there is no wall damping the two regions of instability overlap each
other but appear to be distinct. The inclusion of sufficiently high levels of damping
leads to their coalescence. The value of the wavenumber at which the neutral curves
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Figure 5. Neutral stability curves showing the effect of including (solid line) and excluding (dotted
line) the wall layer in the analytic theory. The wall parameters are K = 2 × 107, B = 4K , m = 2,
T = d = 0.
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Figure 6. Neutral stability curves showing the merger of the Tollmien–Schlichting (TS) mode and
travelling wave flutter (TWF). (a) TWF: d = 0, (b) TS: d = 0, (c) TS/TWF: d = 1000. The other
wall parameters are K = 2 × 107, B = 4K , m = 2, T = 0. (The curves were determined by direct
numerical solution of the Orr–Sommerfeld equation.)

for travelling wave flutter and Tollmien–Schlichting instability merge is given very
closely by the expression (38) for the critical wavenumber αc derived in the inviscid
theory. Furthermore, the corresponding value of R is comparable to the flutter onset
Reynolds number Rf that is also predicted by the lowest-order inviscid theory. Thus it
can be conjectured that the merger of Tollmien–Schlichting instability with travelling
wave flutter has replaced any interaction between divergence and travelling wave
flutter.

The strong effects of wall damping on the character of channel-flow stability also
emerged in the recent study of Gajjar & Sibanda (1996). For a number of special
cases they found that a threshold value of damping exists above which another linear
neutral eigenmode is found in addition to the Tollmien–Schlichting wave. At a still
higher level of damping the two neutral eigenvalues merge and no neutral Tollmien–
Schlichting modes can exist when the damping exceeds this level. In other cases yet
another neutral mode occurs close to the merger point but remains distinct. These
sorts of results are probably related to the phenomenon of modal coalescence under
discussion. It should be recalled, though, that the asymptotic structure on which Gajjar
& Sibanda based their theory is really only appropriate to the Tollmien–Schlichting
mode.

The same kind of qualitative behaviour in the presence of wall damping as seen in
our results was noted by Green & Ellen (1972) in their numerical studies for the case
of compliant channels with walls modelled as tensioned membranes. Although these
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authors discussed the existence of the flow-induced surface instabilities described here
as divergence and flutter, they do not appear to have been aware of the additional
instability mechanism that could lead to travelling wave flutter. Thus Green & Ellen
were unable to analyse some key aspects of their numerical results. We now examine
the relevant part of their work in the light of the theory developed for flow-induced
surface instabilities.

For walls modelled as tensioned membranes, the free wave speed is independent
of the wavenumber. The lowest-order inviscid theory then predicts that the stability
boundaries in the (α, R)-plane for the various flow-induced instabilities are just lines
of constant R. Waves at all wavenumbers simultaneously become unstable as the
flow velocity is increased beyond a critical value. The inclusion of non-vanishing wall
damping displaces these boundaries in a manner that is shown in figure 7. The curve
labelled (a) was obtained by using the approximation P = P0 + iα2 Im(P1) in the
inviscid dispersion relation, i.e. by taking the lowest-order approximation for the wall
pressure and then perturbing it by including the phase shift due the critical layer.
The dispersion relation was then solved for points of neutral stability by matching
the imaginary part of the wave velocity contributed by the critical layer to the part
due to the wall damping. The selected wall parameters are the same as those used by
Green & Ellen in their figure 2(i) (the wall parameter that these authors denote by cw
is just the free wave speed (T/m)1/2). The upper branch of the neutral stability curve
(a) is associated with travelling wave flutter, whilst the lower branch corresponds
to divergence. The lower branch meets the R-axis at the divergence onset Reynolds
number Rd, whilst the upper branch – were it to remain valid for large values of the
wavenumber α – would asymptote to the critical Reynolds number Rt for travelling
wave flutter. Both branches join at the Reynolds number Rf that should mark the
onset of flutter. Curve (b) in figure 7 indicates the stability boundaries computed
using the approximation P = P0 + α2P1, together with a viscous wall layer correction.
It can be seen that the point where the two branches of the neutral curve join has
moved to a lower Reynolds number than Rf . Moreover, the branch of the neutral
curve identified previously as bounding the region of divergence instability now lies
at higher values of α and no longer intersects the R-axis. Curve (c) shows the neutral
stability curve computed from the direct numerical solution of the Orr–Sommerfeld
equation. It is clear that the corrected inviscid theory is quite effective in locating the
merger of the neutral curves for travelling wave flutter and the Tollmien–Schlichting
instability. The lower branch of the stability boundary plotted by curve (b) appears to
give an approximation to the upper branch of the Tollmien–Schlichting neutral curve,
rather than delimiting the region where divergence occurs. That this may happen is
perhaps not too surprising. For the upper branch of the Tollmien–Schlichting neutral
curve, composite solutions of the form used in §4.3 can give valid, if somewhat coarse,
approximations for Tollmien–Schlichting waves (Healey 1995).

In the next section it will be seen that the replacement of divergence by the
Tollmien–Schlichting instability in determining stability boundaries is not an excep-
tional occurrence. The merger of the Tollmien–Schlichting and travelling-wave-flutter
modes of instability also appears to be quite general. Results will be presented which
show that strong interaction between the two modes can occur even in the absence
of any wall damping. Before addressing such matters in more detail, we first note
that there is in fact an instability region in figure 7 which can be associated with
divergence. This appears for low values of the wavenumber α. (In the corresponding
diagram presented by Green & Ellen, there is no such region, presumably because
the computations conducted by these authors were not continued down to sufficiently
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Figure 7. Neutral stability curves as obtained (a) from the inviscid theory with the approximation
P = P0 + iα2 Im(P1), (b) using the approximation P = P0 + α2P1 together with a viscous-wall-layer
correction (the lower part of the curve has only been plotted for R > 6000), (c) from the full
numerical solution of the Orr–Sommerfeld equation. The wall parameters are T = 2.5× 107, m = 1,
B = K = 0, d = 250. The values of R labelled Rd, Rf and Rt indicate, respectively, the critical values
for the onset of divergence, flutter and travelling wave flutter calculated using formulae obtained
from the lowest-order inviscid approximation.

small wavenumbers.) The point of onset for the instability can be predicted exactly
by employing the approximation P = P0 and then taking account of the phase shift
across the critical layer. Near to the onset, the group velocity vanishes, which suggests
that there could be an absolute instability. At larger values of the Reynolds number,
the instability seems to merge with the Tollmien–Schlichting mode of instability. The
neutral curves are joined at a value of R somewhat lower than that at which the
travelling wave flutter and Tollmien–Schlichting modes coalesce.

4.5. Modal coalescence and the onset of divergence instability

Coalescence between the travelling-wave-flutter and Tollmien–Schlichting modes of
instability is consistent with the energy classification developed by Landahl (1962) and
Benjamin (1963). Tollmien–Schlichting waves can be categorized as being of Class A,
whilst travelling wave flutter is of Class B, so in terms of irreversible energy transfer
the two instabilities are complementary. This suggests that there is the theoretical
possibility that the two modes could merge to form a Class C instability. Reapplying
the same form of energy classification, it is not easy to comprehend the merger of
the neutral curves for the divergence and Tollmien–Schlichting modes of instability,
which was also reported in the previous section. Both divergence and the Tollmien–
Schlichting mode are usually expected to be of Class A. Carpenter & Garrad (1986)
and Lucey & Carpenter (1992) have argued that divergence is an absolute instability
and more appropriately regarded as Class C. With either interpretation the apparent
coalescence of the Tollmien–Schlichting and divergence modes is somewhat puzzling.
In the present study, we will not pursue this matter any further. There are some other
interesting features of the divergence branch of solutions which, arguably, require
prior attention. In particular, for cases where the wall parameters are chosen so as
to model Kramer-type compliant surfaces (for such surfaces the bending stiffness
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The compliant wall mass is taken to be m = 2. In (b) the wavenumber is specified by α2 = 1/2.
Permitted values of the phase velocity c can be determined from intersections between each curve
and a horizontal line drawn at a height that represents the effective wall stiffness, i.e. the quantity
appearing on the left-hand side of equation (83). The circles indicate the onset of instability: (i)
travelling wave flutter, (ii) divergence, (iii) modal coalescence.

and spring stiffness are non-vanishing, in contrast to a tensioned membrane), it can
prove difficult to obtain neutrally stable solutions of the Orr–Sommerfeld equation
corresponding to divergence. In order to explain this difficulty in identifying the onset
of divergence instability, we will undertake a re-examination of the inviscid shear
layer theory.

4.5.1. Singular behaviour in the inviscid shear layer theory

Thus far, the highest-order approximation applied in the inviscid dispersion relation
has been obtained by setting P = P0 +α2P1. A correction representing the effect of the
viscous wall layer could also be incorporated. Both P1 and the term associated with
the viscous wall layer can be shown to have singularities at c = 0. (The same form
of singular behaviour was documented by Carpenter & Gajjar 1990, for the case of
Blasius flow.) This is rather unfortunate, since according to the lowest-order inviscid
approximation, divergence should be destabilized at precisely the limit where there
is a wave with zero phase velocity. Consequently, it was not too surprising to find,
on making comparisons with eigenvalues obtained by solving the Orr–Sommerfeld
equation directly, that the approximated dispersion relation did not always deliver
reliable predictions for the branch of upstream-travelling wave solutions that was
expected to give rise to the divergence instability. However, it turned out that marked
disagreement could occur even when the phase speeds concerned were well removed
from any supposed singularity at c = 0.

If we return to the definition given by equation (24), then it may be seen that,
essentially, the quantity P is the ratio of the perturbation fluid pressure at the wall
to the wall displacement. The adjustment which was made to account for the effect
of the viscous wall layer led to the replacement of P by the quantity denoted as Pν .
This latter quantity is still defined by the ratio between the wall pressure and the wall
displacement. When approximations for P and Pν were developed, no consideration
was taken of the possibility that we might have a vanishing wall displacement. It
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is clear that such a possibility can be realized in the case of exact solutions to the
Orr–Sommerfeld equation. Both the wall displacement and the wall velocity can
vanish for the Tollmien–Schlichting mode. Thus, we might expect to find singularities
in Pν at values of α and c which correspond to Tollmien–Schlichting waves in a
rigid-walled channel. Singularities could also occur in the inviscid quantity P if there
were solutions of Rayleigh’s equation that met the no-penetration condition for rigid
walls. Such inviscid solutions would only exist, if at all, for real values of the phase
speed c. When c is taken to be complex, with a non-vanishing imaginary part ci,
Rayleigh’s inflection-point theorem (Drazin & Reid 1981) can be applied to rule
out any possibility of a singularity. Nevertheless, the behaviour of the quantity P
might still be expected to retain some vestige of the singularities that would be
found if viscosity was fully accounted for. We can address this issue more directly by
considering the original expression for P given in §4.1. The expression took the form
of a ratio (compare equation (25))

P(α, c) =
I0(c) + α2I2(c) + α4I4(c) + · · ·

1 + α2I1(c) + α4I3(c) + · · · (76)

where

I0(c) =

∫ 1

0

(U − c)2 dy,

I1(c) =

∫ 1

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy,

I2(c) =

∫ 1

0

(U − c)2 dy

∫ y

0

1

(U − c)2
dy

∫ y

0

(U − c)2 dy,

and the terms I2k−1(c), I2k(c) for k > 1 can be found from similar integrals in a
recursive manner. Previously, P was approximated by truncating a power series
expansion in α2:

P(α, c) = I0(c) + α2 [I2(c)− I0(c)I1(c)] + · · ·
= P0(c) + α2P1(c) + · · · . (77)

It is conceivable that the use of an expansion which disguises the fact that P is
defined by a ratio might lead to poor approximations, even if P itself fails to display
any obvious singular behaviour. Bearing this possibility in mind, we will now examine
the form taken by the quantity I1.

After substituting the parabolic profile mean-flow U = 1 − y2, the integrals that
define I1 can be manipulated to yield

I1(c) =
1

15

(
3

2
− 4

c
(1− c) + 4(1− c)

∫ 1

0

y

(1− c)− y2
dy

)
. (78)

When there is a critical point, the path taken when evaluating the remaining integral
in (78) needs to be indented above yc = (1− c)1/2. A simple calculation then gives the
imaginary part of I1 as

Im (I1(c)) =
2π

15
(1− c) . (79)

It can be seen that I1 has a 1/c singularity, just as was noted previously for the
quantity P1.
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4.5.2. Approximation of the inviscid dispersion relation

The singular behaviour found when c is small can be avoided if the truncated
expansion P = P0 + α2P1 is replaced by the rational approximation

Pd(α, c) =
I0(c) + α2I2(c)

1 + α2I1(c)
= P0(c) +

α2P1(c)

1 + α2I1(c)
. (80)

This does not have any singularity at c = 0. In fact, it is easy to check that

lim
c→0

Pd(α, c) = 0 (81)

when α is non-zero (the behaviour for α = 0 will be discussed later). (Reference should
be made to the explicit expression (50) for the function P1 that was given at the end
of §4.2.) Similarly, it can be shown that

Pd(α, 1) =
1

5

(
1 + 1

14
α2

1 + 1
10
α2

)
, (82)

which explains why, even for α2 of O(1), an expansion of the form (77) was found
to give acceptable results for the onset of travelling wave flutter instability. (It is
interesting to note that the function P(α, 1) can be determined exactly, using a
closed-form solution of Rayleigh’s equation. Details are given in Appendix A.)

The consequences of using different approximations for P are easier to illustrate if
we first rewrite the dispersion relation (26) as

1

U2
m

(
B̄α2 + T̄ +

K̄

α2

)
= mc2 +P(α, c) . (83)

This can be interpreted as defining a balance between an effective wall stiffness and the
combined inertia of the wall and fluid. (For simplicity, we have set the wall damping
term to zero.) In figure 8 curve (a) plots the variation, with the phase speed, of the
quantity that defines the combined inertia when the approximation P = P0 is applied.
For any given wavenumber and mean-flow speed Um, the allowed values of the phase
speed can be located from intersections between the plotted curve and a horizontal
line drawn at a height which corresponds to the effective wall stiffness. If Um is fixed,
then a lowest possible line can be defined so as to represent the stiffness obtained
when the wavenumber is taken to be equal to the critical wavenumber αc = (K̄/B̄)1/4.
(Recall that αc was identified as a key wall parameter in §4.1.) Consequently, we can
investigate the sequence of behaviour that occurs as Um is increased by examining
intersections with horizontal lines of decreasing height. Changes in behaviour will
first be realized for α = αc. It can be seen that, provided Um is not too large, there will
be one intersection that represents an upstream wave and another that corresponds
to a downstream wave. The onset of travelling wave flutter can be identified when
the mean-flow speed is increased to a level that is sufficient to allow the downstream
wave to achieve the phase speed c = 1. The appropriate point is labelled (i)a in the
figure. Similarly, divergence instability can set in when the initially upstream-travelling
wave reverses its direction of propagation at point (ii)a. Finally, the onset of flutter
instability can be visualized in terms of horizontal lines lying below the minimum
point (iii)a of the plotted curve. In such cases, the absence of any intersections implies
that there are no real-valued solutions for the phase speed. Instead, there is a pair of
complex-conjugate solutions, one of which represents the flutter instability.
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4.5.3. Case when αc and the Tollmien–Schlichting wavenumber are comparable

So far, there is nothing new to report. We have merely given a different form of
presentation to results discussed earlier. Curves (b) in figure 8 were determined by
using the approximation P = Pd. They plot the variation of the right-hand side of
equation (83) when P is replaced by the quantity

P r
d (α, c) = P0(c) +

α2Re {P1(c)}
1 + α2Re {I1(c)}

. (84)

Thus, the effect of the critical layer, which is manifested in the imaginary parts of
the functions P1 and I1, has been deliberately ignored. When P r

d rather than P0

is substituted for P, the function on the right-hand side of the dispersion relation
becomes dependent upon the wavenumber. As a consequence, our graphical analysis
is now restricted to a single wavenumber, which for the particular case considered
was set by taking α2 = 1/2. It can be seen that the form of the plot is altered
significantly from that which was found when only the P0-term was retained. There
is a singularity in P r

d , and hence in mc2 + P r
d , at a positive value of c. By considering

intersections between curves (b) in figure 8 and horizontal lines, it may be concluded
that for small enough flow speeds there are three, rather than two, possible values
of the phase speed. In addition to the upstream and downstream solutions found
before, there is a solution with a relatively small positive phase speed. As will be
demonstrated later, this solution can be identified as the inviscid counterpart of a
Tollmien–Schlichting wave. When the mean-flow speed is increased, the phase speed
of the faster downstream wave decreases until it can take the value c = 1 at point (i)b.
Travelling wave flutter may then set in, just as before. However, the upstream wave
can no longer change its direction of propagation. By considering point (iii)b, it may
be observed that the phase velocity can only vanish in the limit where the effective wall
stiffness also vanishes, which would correspond to an infinite flow speed. Thus, there
would not appear to be any possibility of divergence instability. (It should be noted
that there is no physical interpretation for the parts of the plotted curve which lie
below the x-axis, since the wall stiffness cannot be negative.) It can be seen that flutter
instability is also excluded. Instead, the solution that corresponds to travelling wave
flutter coalesces with the third solution corresponding to the Tollmien–Schlichting
mode. Again, the existence of a minimum at point (iii)b in the plotted curve indicates
the occurrence of modal coalescence.

The account given immediately above may be brought into question. It could be
considered inconsistent to neglect the effect of the critical layer when our stated
aim is to examine the consequences of taking the rational approximation P = Pd.
If P is replaced by Pd, rather than the real-valued function P r

d , then there is no
longer any singularity for a real value of the phase speed. However, a residue of
the singular behaviour can be traced in the extremely rapid variations that are
displayed by both the real and the imaginary parts of Pd. These occur over a very
small range of phase speeds, centred around the value at which P r

d was found to
be singular. Rather than attempting to provide a more formal justification for the
graphical analysis which employed the quantity P r

d , we will simply check that such
an analysis does, in fact, predict the correct behaviour for solutions of the inviscid
dispersion relation in the case where the unamended rational approximation P = Pd
is applied. Such solutions are displayed in figure 9. The real and imaginary parts
of the phase velocity are plotted for a wavenumber fixed at the critical value αc. In
order to facilitate comparisons with solutions computed from the Orr–Sommerfeld
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Figure 9. Real and imaginary parts of the phase velocity, as obtained from the inviscid dis-
persion relation using the approximations P = Pd (solid lines) and P = P0 (dotted lines). The
non-dimensional wall parameters are m = 2, B = 4×107, K = 1×107, T = d = 0. The wavenumber

is held constant at the critical value α = αc, where αc = (K/B)1/4 = 1/
√

2. The labels (i), (ii)
distinguish the two solution branches that are related to the free waves that would propagate in
opposite directions along the compliant wall in the absence of the fluid. The solution marked (iii)
can be associated with the Tollmien–Schlichting mode of instability. (In the case where P = Pd, the
imaginary part of the phase velocity is identically zero for the branch of solutions that represents
an upstream-travelling wave.)

equation, the variation is shown with respect to the Reynolds number R, rather than
the mean-flow speed Um. Plots are also given for solutions that were obtained using
the lowest-order approximation P = P0. As expected, there are three distinct solution
branches when Pd is substituted for P. The solution with the largest positive phase
speed corresponds to travelling wave flutter. It can be seen that for sufficiently large
Reynolds numbers, this solution is highly unstable. By contrast, the other solution
representing a wave with a downstream phase speed is subject to strong stabilization.
From a comparison with the results obtained using the lowest-order approximation, it
becomes apparent that the merger that would have led to flutter instability has been
supplanted. Finally, it may be noted that when the approximation P = Pd is applied,
there is a solution that always represents an upstream travelling wave. Taken together,
the above observations provide a vindication for the results that were obtained, more
simply, using the graphical analysis.

Figure 10 displays numerical solutions of the Orr–Sommerfeld equation for the
same values of the wall parameters and the wavenumber as were considered in
the previous figure. For ease of comparison, there is also a replot of the solutions
obtained from the inviscid shear layer theory by substituting Pd for P. It can be seen
that the more sophisticated version of the inviscid dispersion relation gives a fairly
reliable guide to the behaviour discovered by solving the Orr–Sommerfeld equation
directly. In particular, the inviscid theory anticipates, correctly, the existence of an
additional branch of solutions with a downstream phase speed. It is a straightforward
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Figure 10. Real and imaginary parts of the phase velocity, as obtained from direct numerical
solution of the Orr–Sommerfeld equation (solid lines) and the inviscid dispersion relation using
the approximation P = Pd (dotted lines). The non-dimensional wall parameters and the fixed
wavenumber are the same as in figure 9.

matter to verify that such solutions represent Tollmien–Schlichting waves when they
are obtained directly from the Orr–Sommerfeld equation. The inviscid theory also
predicts the interaction between travelling wave flutter and what we have now
identified as the Tollmien–Schlichting mode. As a consequence of this interaction,
travelling wave flutter becomes very strongly unstable. Simultaneously, the Tollmien–
Schlichting mode is subjected to a stabilization which, though not so strong as
the destabilization suffered by travelling wave flutter, is still considerable. Thus, the
interaction retains the hallmarks of a Class A/Class B modal coalescence. The Class-
C character of the subsequent instability is confirmed by the fact that the temporal
growth rates are little affected by the introduction of moderate levels of damping. As
might have been expected, the inviscid shear layer theory gives quite poor quantitative
predictions for the real and imaginary parts of the phase speed along the solution
branch associated with Tollmien–Schlichting waves. A more accurate treatment would
require a careful account of the balance between the viscous effects attributable to
the critical layer and those which arise from the viscous wall layer. However, it can
be seen that such a treatment is not necessary if we are only interested in locating the
onset of the strong instability arising when the Tollmien–Schlichting mode interacts
with travelling wave flutter. In fact, if we return to the graphical analysis presented
earlier, which involved the neglect of all critical layer effects, it may be conjectured
that viscosity is inessential to the mechanism of interaction and coalescence, except
in so far as there would appear to be a need for a shear flow.

We now turn to the branch of solutions that in the inviscid theory, subject to the
approximation P = Pd, was always found to represent an upstream-travelling wave.
For the corresponding solutions obtained directly from the Orr–Sommerfeld equation,
there is a reversal in the direction of wave propagation for high enough Reynolds
numbers. By making a comparison between the appropriate plots in figures 9 and 10
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it can be seen that the Reynolds number at which there is a wave with a vanishing
phase speed is about twice the critical Reynolds number predicted for the onset
of divergence instability using the inviscid approximation P = P0. It may also be
observed that the solutions derived from the Orr–Sommerfeld equation have an
appreciable negative growth rate. Further investigation revealed that the introduction
of fairly high levels of wall damping do not lead to instability for Reynolds numbers
close to that at which the phase speed changes sign. Finally, it should be noted
that although the inviscid theory, with the rational approximation P = Pd, fails
to anticipate the reversal in phase speed discovered from the numerical solution of
the Orr–Sommerfeld equation, the predictions for the behaviour of the upstream-
travelling waves are still considerably better than those that were obtained using the
lowest-order inviscid approximation. Further improvements can be made if a viscous-
wall-layer correction is included (but there is the complication that, for negative phase
speeds, an appropriate branch of the square root needs to be taken for the quantity
Pν defined in (68)). In particular, it is possible to obtain some measure of agreement
for the growth rates of the upstream waves. As a consequence, it would seem plausible
to attribute the stability noted in the solutions of the Orr–Sommerfeld equation to the
effect of the viscous-wall-layer. The incorporation of a viscous wall layer correction
also leads to a slight improvement in the values predicted for the real parts of the
phase speeds. However, it is still not possible to locate the appearance of a wave with
a vanishing phase speed.

4.5.4. Case when αc is much smaller than the Tollmien–Schlichting wavenumber

It may have been noticed that the suppression of the divergence instability seems
to be somewhat at odds with results presented in §4.4. For the case of a compliant
wall modelled as a tensioned membrane, solution of the Orr–Sommerfeld equation
revealed the onset of divergence instability at the precise critical Reynolds number
that could be derived using the inviscid dispersion relation in conjunction with the
simplest approximation P = P0. The success of the lowest-order predictions, in this
particular case, stems from the fact that there is no specific lengthscale associated
with the motion of a tensioned membrane. The effective wall stiffness is independent
of the wavenumber, and so remains finite as the wavenumber approaches zero, where
the instability was found to set in. (A discussion of the behaviour of the function
Pd for vanishing wavenumbers is included in Appendix B.) By contrast, for Kramer-
type compliant surfaces there will always be a critical wavenumber at which the
wall stiffness is minimized. In the analysis presented immediately above, we assumed,
implicitly, that the critical wavenumber was comparable to wavenumbers typical
of the Tollmien–Schlichting instability. Such an assumption of similar lengthscales is
necessary in order to obtain optimized stability effects for Tollmien–Schlichting waves.
If, on the other hand, we had chosen a compliant wall with a critical wavenumber very
much smaller than the wavenumbers typical of unstable Tollmien–Schlichting waves,
we might have anticipated only limited departures from the simple form of behaviour
found by setting P = P0. Singularities attributable to the Tollmien–Schlichting mode
would no longer be expected to have any significant influence on the character of the
flow-induced surface waves.

This expectation was borne out by the results obtained from a more detailed
investigation. When the wall parameters were selected to give the critical wavenumber
as αc = 1/16, it was found that the introduction of a small amount of wall damping
led to the destabilization of divergence in the exact manner predicted using the
lowest-order inviscid approximation. Figure 11 displays the neutral stability curve for
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Figure 11. Neutral stability curves as obtained from direct numerical solution of the
Orr–Sommerfeld equation (solid lines) and the inviscid dispersion relation using the approx-
imation P = P0 + α2Im(P1) (dotted line). The uppermost of the neutral curves corresponds
to the Tollmien–Schlichting instability. Divergence is found at the lower wavenumbers. The
non-dimensional wall parameters are m = 2, B = 5.12× 109, K = 7.8125× 104, T = 0, d = 200.

divergence computed by solving the Orr–Sommerfeld equation directly, together with
the corresponding curve determined from the inviscid theory when P is replaced by
P0 + α2Im(P1). It can be seen that there is good agreement between the two curves.
(The O(α2) phase shift due to the critical layer was incorporated in order to allow
for the possibility of travelling wave flutter instability. In practice, the effect of the
critical layer was found to be insignificant for the small wavenumbers involved: very
slight wall damping was sufficient to stabilize travelling-wave-flutter over the range
of Reynolds numbers considered.) The figure also includes the neutral stability curve
for the Tollmien–Schlichting mode. This is little changed from the curve that would
be found for the case of rigid walls. The wavenumbers concerned are well removed
from the critical wavenumber, so the effective wall stiffness remains much larger than
its allowed minimum. Figure 12 shows the variation, with the Reynolds number, of
the real and imaginary parts of the phase speed for solutions fixed at the critical
wavenumber. In addition to the plot for the branch of solutions corresponding to
divergence instability, there is a plot for the branch that, had the critical layer effects
been stronger, would have led to travelling-wave-flutter instability. It can be observed
that the results derived using the inviscid theory are indistinguishable from those
obtained by solving the Orr–Sommerfeld equation numerically. It may also be noted
that, shortly after the phase speed reversal which marks the onset of divergence
instability, there is a modal interaction that causes the associated branch of solutions
to become more strongly unstable. Simultaneously, the branch of solutions that is
already stabilized by the wall damping is subjected to a further stabilization. Thus,
the interaction between the two modes bears the hallmarks of the flutter instability,
as can be confirmed by comparing the results displayed in figure 12 with the results
derived from the lowest-order inviscid approximation that were presented earlier in
figure 9. From such a comparison it can be inferred that the presence of wall damping
has caused the divergence and flutter instabilities to become continuously connected.
The onset of flutter instability no longer occurs in an abrupt manner. As a final
observation we note that the group velocity vanishes at the point in the (R, α)-plane
where divergence instability first sets in. This suggests that divergence will take the
form of an absolute instability.
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Figure 12. Real and imaginary parts of the phase velocity, as obtained from direct numerical
solution of the Orr–Sommerfeld equation (solid lines) and the inviscid dispersion relation using
the approximation P = P0 + α2Im(P1) (dotted lines). The non-dimensional wall parameters are
the same as in figure 11. The wavenumber is held constant at the critical value α = αc, where
αc = (K/B)1/4 = 1/16.

5. Conclusions
We have investigated the stability of plane channel flow between compliant walls.

The present study has been restricted to disturbances which have the same symmetry,
with respect to the channel centreline, as the Tollmien–Schlichting mode of instability.
In addition to documenting the well-known stabilizing effect of wall compliance on
Tollmien–Schlichting waves, we have examined the behaviour of the flow-induced
surface instabilities that, in practical applications, would limit the potential for ob-
taining a transition delay. The flow-induced surface instabilities were investigated
using a dispersion relation derived from an inviscid shear layer theory. The effects of
the viscous wall layer could be ascertained by implementing a simple modification
to the inviscid dispersion relation. Results obtained using various analytic approxi-
mations to the dispersion relation were compared with the results obtained from the
direct numerical solution of the Orr–Sommerfeld equation. As with previous studies
for the case of Blasius flow, various forms of flow-induced surface instability could
be identified. These included the divergence and travelling-wave-flutter instabilities,
as well as the flutter instability arising from their modal coalescence. It was shown
that the branch of solutions associated with the travelling-wave-flutter instability
could also interact with the branch representing Tollmien–Schlichting waves. In such
circumstances the Tollmien–Schlichting mode could take on an inviscid character.

The instability most easily described using the inviscid theory as a starting point is
travelling wave flutter. This arises when there is a critical layer to generate a phase
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shift between the wall velocity and the perturbation fluid pressure at the wall. The
characteristics of the instability classified as divergence proved to be more difficult to
determine. However, though the results concerning the onset of divergence instability
remain somewhat incomplete, they represent definite progress over previous studies
based on Blasius flow. Such studies, which relied upon a potential theory model
of the mean flow, achieved very limited success in linking analytic results for the
onset of divergence with numerical solutions of the Orr–Sommerfeld equation. (For a
recent example, reference should be made to figure 17 in Carpenter & Morris 1990.)
Moreover, potential-flow modelling often yields poor predictions for the critical flow
speeds found in experiments (Riley et al. 1988). It is likely that the difficulties
encountered in predicting the onset of divergence instability for the case of Blasius
flow can be traced to the same source as was found for channel flow. For Blasius flow,
we should again expect to find singularities in the function defining the ratio of the
wall pressure to the wall displacement. These would be attributable to the Tollmien–
Schlichting waves that can propagate along a Blasius boundary layer adjacent to a
rigid wall. Thus, for Blasius flow as well as for plane channel flow, it may not always
be feasible to give an account of flow-induced surface waves without also treating
Tollmien–Schlichting waves, or their inviscid counterparts, within the same analytic
framework.

What are, perhaps, the most significant results depend on how the wavenumber,
αc, of the slowest free wave on the compliant wall compares in magnitude with
the wavenumber, αts, of the most unstable Tollmien–Schlichting wave. For those
compliant walls which are effective at stabilizing the Tollmien–Schlichting waves,
the two wavenumbers tend to be comparable in magnitude. For such walls it seems
unlikely that divergence will exist as an instability when the flow is laminar. It appears
to be replaced by a strong interaction between the Tollmien–Schlichting waves and
travelling wave flutter. Viscous and wall-damping effects are not essential for this
process, but damping does appear to be required for full modal coalescence. For cases
where αc � αts, including special cases like the tensioned membrane, divergence does
exist as an instability. Strong interaction and coalescence are now possible between
the divergence and travelling-wave-flutter eigenmodes, leading to zero group velocity
and, presumably, absolute instability.

These conclusions probably carry over to the Blasius boundary layer. The limited
evidence available from previous theoretical studies and recent numerical simulations
(Lucey et al. 1996) suggests that divergence does not occur when αc and αts are
comparable in magnitude. Since this is precisely the case of interest for laminar-
flow control, it is a highly significant result. Previous studies of the optimization of
compliant walls for transition delay were based on estimates of divergence onset taken
from potential-flow theory. This now appears highly conservative and it may well
be possible to suppress Tollmien–Schlichting waves completely using multiple-panel
compliant walls irrespective of how high the Reynolds numbers become (Carpenter
1993, 1994; Davies & Carpenter 1997).

Appendix A. Exact solutions of Rayleigh’s equation
For the parabolic mean flow profile U = 1− y2, and for a disturbance with phase

velocity c = 1, Rayleigh’s equation takes the simple form

− y2
(
D2 − α2

)
φ+ 2φ = 0 , (A 1)
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where α is the wavenumber and φ(y) is the disturbance profile. It may be verified
that this has an exact symmetric solution

Φ(y) = cosh(αy)− sinh(αy)

αy
. (A 2)

Using the definition of P in the form stated in equation (60) we may then obtain the
result that

P(α, 1) =
1

α coth α− 1
− 3

α2
. (A 3)

It is straightforward to check that this can be written as

P(α, 1) =
1

5

(
1 + 1

14
α2 + · · ·

1 + 1
10
α2 + · · ·

)
, (A 4)

which conforms with the expression (82) that was noted in connection with the
rational approximation P = Pd. It is also easy to establish that

0 < P(α, 1) 6 P(0, 1) = 1
5
. (A 5)

Retracing the steps involved in developing the inviscid theory, it may then be shown
that the use of a long-wavelength approximation can only lead to an underestimation
of the critical flow velocity for the onset of travelling wave flutter.

Rayleigh’s equation for c = 1 also has the exact antisymmetric solution

Φas(y) = sinh(αy)− cosh(αy)

αy
. (A 6)

This has a 1/y singularity at the channel centre y = 0. Thus we can anticipate greater
difficulty in developing the inviscid theory for any antisymmetric form of travelling
wave flutter. (The case where 0 < c < 1 and α = 0 has been considered by Huang
1997.)

Appendix B. A note on the behaviour of the function Pd in the limit where
both the wavenumber and the phase velocity vanish

The behaviour displayed by the approximating function Pd(α, c) when (α, c)→ (0, 0)
is pertinent to the onset of divergence instability in the case where the compliant
wall is modelled as a tensioned membrane. Solution of the Orr–Sommerfeld equation
indicates that instability sets in when both the wavenumber and the phase velocity
vanish. The behaviour in the same limit would also be expected to be significant for
a Kramer-type compliant surface when the wall parameters are chosen so as to yield
a very small value for the critical wavenumber, i.e. the wavenumber at which the
effective wall stiffness is minimized.

If we consider the definition of Pd given by (80), then we can obtain the result

lim
α→0

Pd(α, c) = P0(c) (B 1)

for non-vanishing values of the phase velocity. Proceeding to take the limit as the
phase velocity tends to zero, it may be seen that

lim
c→0

(
lim
α→0

Pd(α, c)
)

= P0(0) = 8
15
. (B 2)

By contrast, if we first allow the phase velocity to approach zero, and then consider
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the limit of a vanishing wavenumber, we obtain (compare equation (81))

lim
α→0

(
lim
c→0

Pd(α, c)
)

= 0 . (B 3)

Thus the function Pd displays a discontinuity at the point (α, c) = (0, 0). Without
embarking upon a more elaborate investigation, it would be impossible to determine
the appropriate form of limiting behaviour. However, since for the case of a tensioned
membrane a perturbation analysis based upon the approximation P = P0 was found
to yield the correct prediction for the onset of divergence instability, it would appear
that (B 2), rather than (B 3), should be employed.
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